UC President Janet Napolitano Steps Down


UC Vice President Glenda Humiston Statement on UC President Napolitano stepping down

By Pam Kan-Rice, UC ANR

Glenda Humiston, University of California vice president for agriculture and natural resources, issued the following statement on Wednesday:

Earlier today (Sept. 18), UC President Janet Napolitano announced that she will be stepping down as president of the University in August 2020. President Napolitano joined UC as the first woman to lead the university in 2013.

We are thankful for President Napolitano’s leadership and vision to address critical issues that affect California, the rest of the country and the world.

Recognizing the challenge of feeding a growing worldwide population, Napolitano launched the Global Food Initiative to inspire more collaboration and draw from the collective resources of all 10 UC campuses, UC Agriculture and Natural Resources and Lawrence Berkeley National Laboratory to develop solutions for food security, health and sustainability.

To address the threat of climate change, she created the Carbon Neutrality Initiative, which marshals resources from across the UC system to research and develop ways to reduce greenhouse gas emissions.

To attract and retain top-flight academics, she created the Presidential Match for Endowed Chairs to help UC campuses and UC ANR encourage donors to establish endowed chairs to fund research. The Presidential Match has enabled UC ANR to fill five endowed positions in UC Cooperative Extension, ensuring the scientists will have a dedicated source of funding for their ongoing agricultural research.

Finally, she emphasized the university’s commitment to diversity by taking actions to let immigrant and LGBTQ members of the UC community know they are welcome and supported.

The UC Board of Regents will soon appoint a search committee to start a national search for the next president of the University. Per policy, the search committee will include student, academic and alumni representatives who will seek input from the UC community and the public.

More information, including highlights of President Napolitano’s tenure at the University, can be found at https://www.universityofcalifornia.edu/press-room/university-california-president-janet-napolitano-announces-decision-step-down-next-year.

 

Protecting Melons From Silver Leaf Whitefly

Avoid Planting Near Earlier Planted Crops

By Patrick Cavanaugh, Editor

Silver leaf whitefly can be a severe yield-robbing pest in melons, but there are ways to prevent the damage, according to Tom Turini, a UCANR Vegetable Crops Adviser in Fresno County.

“A tactic is going to depend upon planting. If you’re able to put the crop into an area where you’re not next to earlier planted melons or cotton or known sources of whitefly, your likelihood of experiencing damaging whitefly levels is going to be lower,” Turini said. “Growers can’t always do that, but that’s part of the approach when you can. You’ll limit your risk.”

Tom Turini, UCANR Farm Advisor, Fresno County

Turini said the pest could mainly be a problem when you’re putting in those late melon fields when whitefly populations are higher.

“Whiteflies are not good fliers, so when you put those fields in areas where you don’t have sources of whitefly nearby then you will have less pressure for sure,” Turini said.

“Then there are some insecticide programs that you can look at, particularly when you know you’re going to have pressure,” Turini explained. “If you’re coming into high temperatures, and you’ve got late-planted melons, you may want to start with soil-applied insecticides, through the drip. It could be Admire; also Sivanto is a newer material that that has registration and has shown efficacy in desert production areas, which have much higher pressures and more consistent pressures than we do in the San Joaquin Valley.”

Pests and Diseases Cause Worldwide Damage to Crops

Pests and Pathogens Place Global Burden on Major Food Crops

By Pam Kan-Rice, UC Agriculture & Natural Resources

Scientists survey crop health experts in 67 countries and find large crop losses caused by pests and diseases

Farmers know they lose crops to pests and plant diseases, but scientists have found that on a global scale, pathogens and pests are reducing crop yields for five major food crops by 10 percent to 40 percent, according to a report by a UC Agriculture and Natural Resources scientist and other members of the International Society for Plant Pathology. Wheat, rice, maize, soybean, and potato yields are reduced by pathogens and animal pests, including insects, scientists found in a global survey of crop health experts.

At a global scale, pathogens and pests are causing wheat losses of 10 percent to 28 percent, rice losses of 25 percent to 41 percent, maize losses of 20 percent to 41 percent, potato losses of 8 percent to 21 percent, and soybean losses of 11 percent to 32 percent, according to the study, published in the journal Nature, Ecology & Evolution.

Viruses and viroids, bacteria, fungi and oomycetes, nematodes, arthropods, molluscs, vertebrates, and parasitic plants are among the factors working against farmers.

Food loss

“We are losing a significant amount of food on a global scale to pests and diseases at a time when we must increase food production to feed a growing population,” said co-author Neil McRoberts, co-leader of UC ANR’s Sustainable Food Systems Strategic Initiative and Agricultural Experiment Station researcher and professor in the Department of Plant Pathology at UC Davis.

While plant diseases and pests are widely considered an important cause of crop losses, and sometimes a threat to the food supply, precise figures on these crop losses are difficult to produce.

“One reason is because pathogens and pests have co-evolved with crops over millennia in the human-made agricultural systems,” write the authors on the study’s website, globalcrophealth.org.  “As a result, their effects in agriculture are very hard to disentangle from the complex web of interactions within cropping systems. Also, the sheer number and diversity of plant diseases and pests makes quantification of losses on an individual pathogen or pest basis, for each of the many cultivated crops, a daunting task.”

“We conducted a global survey of crop protection experts on the impacts of pests and plant diseases on the yields of five of the world’s most important carbohydrate staple crops and are reporting the results,” McRoberts said. “This is a major achievement and a real step forward in being able to accurately assess the impact of pests and plant diseases on crop production.”

The researchers surveyed several thousand crop health experts on five major food crops – wheat, rice, maize, soybean, and potato – in 67 countries.

“We chose these five crops since together they provide about 50 percent of the global human calorie intake,” the authors wrote on the website.

The 67 countries grow 84 percent of the global production of wheat, rice, maize, soybean and potato.

Top pests and diseases

The study identified 137 individual pathogens and pests that attack the crops, with very large variation in the amount of crop loss they caused.

For wheat, leaf rust, Fusarium head blight/scab, tritici blotch, stripe rust, spot blotch, tan spot, aphids, and powdery mildew caused losses higher than 1 percent globally.

In rice, sheath blight, stem borers, blast, brown spot, bacterial blight, leaf folder, and brown plant hopper did the most damage.

In maize, Fusarium and Gibberella stalk rots, fall armyworm, northern leaf blight, Fusarium and Gibberella ear rots, anthracnose stalk rot and southern rust caused the most loss globally.

In potatoes, late blight, brown rot, early blight, and cyst nematode did the most harm.

In soybeans, cyst nematode, white mold, soybean rust, Cercospora leaf blight, brown spot, charcoal rot, and root knot nematodes caused global losses higher than 1 percent.

Food-security “hotspots”

The study estimates the losses to individual plant diseases and pests for these crops globally, as well as in several global food-security “hotspots.” These hotspots are critical sources in the global food system: Northwest Europe, the plains of the U.S. Midwest and Southern Canada, Southern Brazil and Argentina, the Indo-Gangetic Plains of South Asia, the plains of China, Southeast Asia, and sub-Saharan Africa.

“Our results highlight differences in impacts among crop pathogens and pests and among food security hotspots,” McRoberts said. “But we also show that the highest losses appear associated with food-deficit regions with fast-growing populations, and frequently with emerging or re-emerging pests and diseases.”

“For chronic pathogens and pests, we need to redouble our efforts to deliver more efficient and sustainable management tools, such as resistant varieties,” McRoberts said. “For emerging or re-emerging pathogens and pests, urgent action is needed to contain them and generate longer term solutions.”

The website globalcrophealth.org features maps showing how many people responded to the survey across different regions of the world.

In addition to McRoberts, the research team included lead author Serge Savary, chair of the ISPP Committee on Crop Loss; epidemiologists Paul Esker at Pennsylvania State University and Sarah Pethybridge at Cornell University; Laetitia Willocquet at the French National Institute for Agricultural Research in Toulouse, France; and Andy Nelson at the University of Twente in The Netherlands. 

UC Agriculture and Natural Resources researchers and educators draw on local expertise to conduct agricultural, environmental, economic, youth development and nutrition research that helps California thrive. Learn more at ucanr.edu.

Healthy Soils Initiative Looks at Cover Crops

Cover Crops Between Annual Veg Crops Studied

 By Patrick Cavanaugh, Editor

Research is under way to determine if using cover crops between two annual vegetable crops will improve the soil for future crops. It’s all part of the California Department of Food and Ag Healthy Soils Program—a statewide project.

Amber Vinchesi is a UCANR Vegetable Crops Farm Advisor in Colusa, Sutter and Yuba counties. She works mainly with processing tomatoes but also with growers farming vegetables for seed as well as fresh market vegetables such as honeydew and cantaloupe melons.

Vinchesi is collaborating with California’s Healthy Soils Initiative, a partnership of state agencies and departments led by the CDFA Healthy Soils Project. It’s a combination of innovative farm and land management practices that may contribute to building adequate soil organic matter that may increase carbon sequestration and reduce overall greenhouse gases.

“We have three sites, and the site that I’m working on is focused on winter cover crops between crops such as wheat, tomato or corn, to improve soil health,” said Vinchesi, who is being assisted by her colleague Sarah Light, the agronomy advisor in Sutter, Yuba, and Colusa counties

Other Healthy Soil sites are located in the Delta area, and overseen by Michelle Leinfelder-Miles, UCANR Delta Crops Resource Management Advisor in San Joaquin County. Brenna Aegerter, a UCANR Vegetable Crops Farm Advisor also in San Joaquin County, is working with Leinfelder-Miles. Additionally, Scott Stoddard a UCANR Vegetable Crops Farm Advisor in Merced County has a site.

The cover crop will be vetch, a legume.

“We hope that it will put nitrogen and biomass into the soil,” Vinchesi said. “We’re not sure what the results will be, but we hope it will help with aggregate stability, water infiltration, and even reduce weed density.”

She noted that the trial, which is in the first year of a three-year project, will include two different seeding rates, a high and low rate, and then an untreated control where there’s no cover crop.

“And we’ll do soil testing to see how things change in the soil over time,” she explained.

Jeff Mitchell: Conservation No-Till Is One Option For Water Conservation

Jeff Mitchell Has Devoted Career to Conservation No-Till

By Patrick Cavanaugh, Editor

Jeff Mitchell is a Cropping Systems Specialist at UC Davis, based at the Kearney Agricultural Research and Extension Center in Parlier. He has devoted 19 years to improving nitrogen and water use efficiencies in food, feed, fuel and fiber in no-till cropping systems.

Mitchell’s passion helped found Conservation Agriculture Systems Innovation Center (CASI) in 1998. CASI operates under the auspices of the University of California Division of Agriculture & Natural Resources.

His no-till research focuses on soil quality management and potential roles of cover crops and compost in intensive row crop production systems, and the use of cover crop mulches as a means of conserving soil water, suppressing weeds and increasing organic matter in no-till production systems.

He often cites a book called Plowman’s Folly by Edward H. Faulkner, published following the ruinous Dust Bowl. Faulkner dropped an agricultural bombshell when he blamed the then universally used moldboard plow for disastrous pillage of the soil.

This book is the 11th all-time cited, read, or acknowledged a piece of work related to the soil in the history of scientific literature.

“When it was written in 1943, it caused great arguments. The government got involved with the USDA trying to defend the science of the day,” Mitchell said.

The reason the book was so controversial is that it proved that there had been no scientific reason for plowing.

“He was getting in people’s faces by saying, ‘This might not be the way to do it,’ ” Mitchell said. “Faulkner’s stance was embroiling people.”

Mitchell’s work centers on conservation, no-till production of vegetable and cotton crops. The idea is to plant in the crops’ residue, which builds up a rather thick layer of mulch on the bed—leading to reduced water and nitrogen, as well as minimizing weeds.

Mitchell cited several growers in the Midwest and in California that are successfully practicing conservation no-till agriculture. And there is much more recent attention on soils with the Healthy Soils Program (HSP)—stemming from the California Healthy Soils Initiative, a collaboration of state agencies and departments to promote the development of healthy soils on California’s farmlands and ranch lands.

Jeff Mitchell describing the no-till soil that he has been working with for 19 years.

The HSP has two components: the HSP Incentives Program and the HSP Demonstration Projects. The HSP Incentives Program provides financial assistance for the implementation of conservation management that improves soil health, sequester carbon and reduce greenhouse gas (GHG) emissions. The HSP Demonstration Projects showcase California farmers’ and ranchers’ implementation of HSP practices.

“The principles that we are pursuing are allowing growers to keep excellent yields and maybe increase sometimes, cut out some inputs like fertilizers to save money, and to do it with less—less disturbance and fewer operations,” Mitchell explained. “None of this is new. It was 90 years ago when the Natural Resources Conservation Service established the principles of good soil management

  1. Healthy soil holds more water (by binding it to organic matter), and loses less water to runoff and evaporation.
  2.  Organic matter builds as tillage declines and plants and residue cover the soil. Organic matter holds 18 to 20 times its weight in water and recycles nutrients for plants to use.
  3. One percent of organic matter in the top six inches of soil would hold approximately 27,000 gallons of water per acre!
  4. Most farmers can increase their soil organic matter in three to 10 years if they are motivated about adopting conservation practices to achieve this goal.

“In 2013, a group of 30 farmers came up with a similar kind of a list,” Mitchell said. “They brainstormed on what would be good soil management, and they came up [with] feed the soil organic matter, reduced disturbance, increased diversity—the same as the NRCS list.”

Mitchell cited a newspaper article published in 1931. “People were finding benefits of cover crops in San Joaquin Valley farming systems. Now with the Healthy Soils Initiative, farmers are trying these techniques and evaluating it. There’s a lot of activity that is going on at many different sites in the state.”

Mitchell’s work at the West Side Research and Extension Center in Five Points on the conservation no-till approach has been with scientific protocol and replicated over 19 years.

“Initially, we would have several systems. In the no-till system, rotations of cotton, transplanted tomato, and a forage crops would grow back to back in a no-till system,” he explained. “Each crop would be planted in the residue of the previous crop. Over the years, the no-till plots have grey residue from last year plantings.”

A cover crop has been planted in a no-till field of cotton that followed tomatoes.

“Cover crops can also be part of the no-till system, which over the last 18 years have added 34 tons of biomass, which includes 13 tons of carbon per acre to the system, which is a good thing,” Mitchell said. “It adds fuel to the soil biology, but it’s not perfect.”

“My supposition would be that growing cover crops is more completed than people think. I have been at meetings where growers say: ‘are you kidding, I’m not going to grow cover crops because I do not have the water,’” Mitchell noted.

He said he understands the situation in not having enough water. But he explained, “In the winter time, yes there will be evaporation from the soil service every day. Radiation is beating down, and there will be evaporation.”

Evaporation in the cover crop field could be more nuanced. Maybe because the soil surface is shaded out, which would cool the soil, there may not be that much evaporation. The cover crops may increase infiltration of water in the ground, instead of it ponding on the soil surface.

“Yes, there will be some inevitable use of water by growing vegetation in the field in the winter, but it could be less than we think,” Mitchell said.

Mitchell then showed two large aluminum pans of soil. One showed soil dug up in an open field that has been tilled. The other container is soil with crop residue from the non-tilled plots.

He takes a handful of each and drops them into two individual gallon jars within an open metal grid with a few inches of water. This what Mitchell sees every time he does this. The large jar with tilled soil breaks up rapidly with soil particles dropping to the bottom. Within the no-tilled soil jar, the chunk of soil is very stable, with no soil particles breaking off.

“One thing that we are not doing now is looking at the potential benefits of these no-till systems and practices for conserving water and making better use of water that has been achieved in other areas of the world such as South America and the Great Plains and other regions of the United States. They do not have irrigation systems that California has; they have to wait for rainfall.”

“When we do the no-tilled system with lots of residue from back-to-back crops, with cover crops and with no disturbances, you may be able to keep 4 to 5 inches of water in the soil each year compared to a tilled crop.

More information on the Conservation No-Till system can be found here.

California Sweet Potatoes are One of A Kind

California Sweet Potatoes Grow in Well-Drained Soil

By Jessica Theisman, Associate Editor

California sweet potatoes are in full harvest, and our potatoes are one of a kind, said Scott Stoddard a UCANR Cooperative Extension farm advisor for vegetable crops in Merced County. The difference is the sheen.

Scott Stoddard

“Sometimes they come up clean out of the ground because we’ve grown them in a very loose sand, so the sand just falls off of them, and it almost leaves some shine,” he said.

You can get what is called the California Sheen.

In a lot of other areas of the country, there is a little bit of mud and a little bit of silt. The crop they’re digging up is growing in the ground and kind of looks like it needs to be washed.

“A lot of times with California sweet potatoes, they don’t even look like they need to be washed when they come up out of the ground. It looks like they can just go straight from the field to fork,” Stoddard said.

Well-drained soil is important. Well-drained soil is what they grow best in.

“Not like a cactus where they can survive on no water, but we can get by in about two and a half acre feet. That’ll give you a good 100 percent potential yield,” Stoddard explained.

Livestock Owners Asked to Weigh in on Fire Impact

Livestock Owners Should Participate in Fire Survey

By Pam Kan-Rice, UC Agriculture & Natural Resources

Preparing a farm for wildfire is more complicated when it involves protecting live animals. To assess the impact of wildfire on livestock production, University of California researchers are asking livestock producers to participate in a survey. 

People raising cattle, sheep, goats, poultry, swine, horses, llamas, alpacas, aquaculture species or other production-oriented animals in California who have experienced at least one wildfire on their property within the last 10 years are asked to participate in the FIRE survey.

“We will aim to quantify the impact of wildfires in different livestock production systems,” said Beatriz Martinez Lopez, director of the Center for Animal Disease Modeling and Surveillance in the UC Davis School of Veterinary Medicine. “The idea is also to create a risk map showing areas more likely to experience wildfires with high economic impact in California.

“This economic and risk assessment, to the best of our knowledge, has not been done, and we hope to identify potential actions that ranchers can take to reduce or mitigate their losses if their property is hit by wildfire.”

Martínez López, who is also an associate professor in the Department of Medicine & Epidemiology at UC Davis, is teaming up with UC Cooperative Extension livestock and natural resources advisors and wildfire specialists around the state to conduct the study.

“Right now, we have no good estimate of the real cost of wildfire to livestock producers in California,” said Rebecca Ozeran, UC Cooperative Extension livestock and natural resources advisor for Fresno and Madera counties. “Existing UCCE forage loss worksheets cannot account for the many other ways that wildfire affects livestock farms and ranches. As such, we need producers’ input to help us calculate the range of immediate and long-term costs of wildfire.”

Stephanie Larson, UC Cooperative Extension livestock and range management advisor for Sonoma and Marin counties, agreed, saying, “The more producers who participate, the more accurate and useful our results will be.”

“We hope the survey results will be used by producers across the state to prepare for wildfire,” said Matthew Shapero, UC Cooperative Extension livestock and natural resources advisor for Ventura and Santa Barbara counties, “And by federal and private agencies to better allocate funds for postfire programs available to livestock producers.”

The survey is online at http://bit.ly/FIREsurvey. It takes 15 to 30 minutes, depending on the number of properties the participant has that have been affected by wildfire.

“Survey answers are completely confidential and the results will be released only as summaries in which no individual’s answers can be identified,” said Martínez López. “This survey will provide critical information to create the foundation for future fire economic assessments and management decisions.”

Karen Klonsky Dies, Thursday, Sept. 27

Klonsky Credited for CA Agricultural Cost and Return Studies

 

By Patrick Cavanaugh, Editor and Laurie Greene, Founding Editor

Editor’s Note: We extend our deepest condolences to Karen’s family. Below is our interview with Karen upon her retirement in 2015.

 

This is an exclusive interview with Karen Klonsky, UC Davis Cooperative Extension specialist emeritus, in the UC Davis Department of Agricultural and Resource Economics. Her expertise has been farm management and production, sustainable agriculture and organic agriculture.

CalAgToday: Congratulations on your recent retirement!UCANR 100 years logo

Klonsky: Thanks, Patrick. I retired on July 1, 2015, after 34 years. I started at UC Davis in ’81, straight from graduate school.

CalAgToday: What has been your primary research interest?

Klonsky: My primary research areas are c and organic agriculture. I have approached these subjects from several dimensions, including the economic feasibility of alternative farming practices, the size and growth of organic production in California, and factors influencing the adoption of alternative farming systems.

Karen Klonsky UC Cooperative Extension specialist
Karen Klonsky UC Cooperative Extension specialist

CalAgToday:  Wow, what a great career! I understand your interest in alternative farming systems began with your dissertation work comparing alfalfa systems with integrated pest management.

Klonsky: I studied agricultural economics in graduate school and started working with a professor in my department who had a joint appointment in agricultural economics and entomology. And I just became very interested in that research area.

I worked with entomologists and researchers on a computer model of plants and alfalfa weevils, and their interaction, plus a management component. I studied the plant and bug components, then did the management part and imposed it on top and asked, ‘If you did this, how many bugs would die?’ The plant model showed how much the alfalfa would grow, and at what point you could cut the alfalfa and achieve the desired yield. I never actually did any fieldwork.”

CalAgToday:  Since 1983, you not only directed ongoing Cost and Return Studies, but the development of an entire archived library of Cost and Return Studies for the UC Davis Department of Agricultural and Resource Economics. You recently completed studies on pistachios and walnuts, right?

Klonsky: Yes, both “Sample Costs to Establish and Produce English Walnuts In the Sacramento Valley, Micro sprinkler irrigated” and “Sample Costs to Establish and Produce Pistachios In the San Joaquin Valley-South, Low-Volume Irrigation.”

Our library contains studies about field, tree and vine crops and animal commodities. But since I retired, Dan Sumner, director, University of California Agricultural Issues Center and Frank H. Buck, Jr. Distinguished Professor for the Department of Agricultural and Resource Economics has taken that over and I continue to be peripherally involved.

CalAgToday:  These cost studies have been recognized worldwide.ARE Cost and Return Studies

Klonsky: Yes, and it has been very gratifying work. We decided to put them online routinely, and we have had a million downloads per year. Around 2005, Pete Livingston, my staff research associate, got the idea of scanning in the older studies. All of the newer studies were in electronic file format, so posting was easy. However, most of the older studies were paper copies, so we got a grant to scan and add them to our new online archive.

CalAgToday:  What was the most interesting thing about doing those cost studies?

Klonsky: I loved doing those studies. I really learned a lot because all cost studies are done directly with farmers we met through county farm advisors. I really got to know what farmers were thinking about and what their options were.

CalAgToday:  So those were real costs, not university costs?

Klonsky: Those were not university costs. The farmers tell us what equipment they will use, and then we calculate the cost of using their equipment—the fuel used to operate the equipment and the repair costs—with an agriculture-engineering program.

CalAgToday:  Do you have a math background?

Klonsky: Yes, I got my bachelor’s at the University of Michigan in mathematics. It was very helpful.

CalAgToday:  And you also earned your Ph.D. at the University of Michigan?

Klonsky: Yes.

CalAgToday:  So did you grow up in Michigan?

Klonsky: No, I grew up in New York.

CalAgToday:  And you had an interest in going to Michigan State University?

Klonsky:  I had an interest in agriculture because I had an uncle who farmed corn and vegetables in upstate New York. We would go up there and I thought it was the most wonderful thing in the world.

CalAgToday:  What were some of the highlights of your career?

Klonsky: For many, many years, I was involved in the long-term on-campus sustainable agriculture research on land that is now on Russell Ranch, but it started as Sustainable Ag Farming Systems. We looked at four different farming systems, organic, low input, high-input, and we did a lot of analyses with cover crops and rotations. It was great to work on that project.

CalAgToday: And you worked with USDA on the trends of organic farms?

Klonsky: Then I worked quite a bit with Department of Food and Agriculture on using the registration data for their organic farmers to compile statistics about how many farmers they had, what they grew, and the number of acres they planted with each crop. They had this database, which started in 1992 I believe, but they weren’t using it. Now the most recent registration analysis is available for 2012.

CalAgToday:  Just to try to get more data on the organic movement and organic growth?

Klonsky: Yes, because there was no data at all about it. Now NASS (National Agriculture Statistics Service) conducts a nationwide Organic Census, in addition to the regular Census of Agriculture.

CalAgToday:  I understand you served as an editor of the Journal of American Society of Farm Managers and Rural Appraisers (ASFMRA). What did that entail?ASFMRA

Klonsky: Yes. I did that for many years. ASFMRA is a national organization. The Journal of the ASFMRA comes out annually. As editor, I corresponded with the authors, assigned reviewers, and ultimately, accepted or rejected submissions, like any journal.

CalAgToday:  Did you travel a lot with your work and presentations?

Klonsky: You know, not so much, I went to Spain one time and France once for work. But I did travel around domestically to symposiums and conferences to speak on the economics of growing a lot of different crops, including many presentations at the EcoFarm Conference.

CalAgToday:  You worked and collaborated with some really interesting people.

Klonsky: Most of my important collaborations were conducting trials with people in other disciplines. For instance, at Russell Ranch, I was the only economist involved in the collaboration with plant pathologists and pomologists who ran trials to discover fumigation alternatives in the preplanting of trees.

Then I worked with people at UC Santa Cruz on alternatives for strawberry fumigation. Most of my work has been interdisciplinary.

CalAgToday:  California farming is a tremendously diverse industry. We produce 60% of the fruits and vegetables, and nearly 100 percent of the nut crops that people across the country consume. Any comments on that and on how, valiant and resilient farmers are to get through year after year, particularly lately with the drought and the lack of water deliveries?

Klonsky: When I first started, there was a land price bubble, and there were a lot of bankruptcies because people had these land payments they just couldn’t pay.

It was kind of like the mortgage crisis that housing saw in 2008, agriculture saw in the early 80s.

CalAgToday:  So as you have been editor for the Journal of the American Society of Farm Managers and Rural Appraisers, you see land values going up and that keeps agriculture strong—the high land values, right?

Klonsky: Well, but it keeps it expensive. So now there is more and more leasing of land. As farmers retire from permanent crops, they have an orchard, but they don’t really want to sell it, so they lease it.

CalAgToday:  There you go. Keep it somehow in the family.

Klonsky: Yes, they try to keep ownership in the family. Or what we see also are these development leases where a young farmer can’t afford to buy the land, so they lease the land, but they pay for the trees to be planted.

CalAgToday:  So you are still coming to your office at UC Davis?

Klonsky: I am officially retired, but we have what we call a ‘partial recall’ where you can do things if you have funding. I have a project along with Rachel Goodhue, Professor, UC Davis Department of Agricultural and Resource Economics, with the California Department of Food and Agriculture, funded through the California Department of Pesticide Regulation. The Department of Pesticide Regulations is required by law to do an economic analysis of all proposed new regulations. So that is what I am working on.

CalAgToday:  Give me a couple of examples. VOC regulations?

Klonsky: Yeah, we do VOC.

CalAgToday:  Are you looking at sustainable groundwater legislation?

Klonsky: No, just pesticide regulation. It is funded by the Mill tax on pesticides.

CalAgToday:  Did you work with a lot of graduate students at UC Davis?UC Davis Graduate Studies

Klonsky: Oh yeah, I worked with a lot of graduate students coming through. One of them was on different ways of pesticide management on eucalyptus trees. I said I went to Spain. On that trip, I spoke about growing eucalyptus for firewood.

CalAgToday:  That was an economic study, wasn’t it?

Klonsky: Yes it was. They grow it not for firewood, but for paper. But that never really caught on here.

CalAgToday:  Are you bullish on agriculture? Do you think Ag is going to continue thriving in California?

Klonsky: Oh, sure. Oh, sure. But I think that the water situation is definitely real, and I think agriculture already has definitely made tremendous strides in irrigation systems, especially the subsurface irrigation in vegetables, in particular processing tomatoes, which I worked on.

CalAgToday:  That was a huge improvement in growing tomatoes. And people didn’t think it was going to work, but it turned out to be fantastic.

Klonsky: Yeah, a really win-win on that one. And orchards are getting more efficient. If you look at the water per pound of crop produced, you see major improvements with water efficiency.

CalAgToday:  Absolutely. Of course, most plants transpire most of the water they take up through the roots, up through the leaves and the stomata cells. By the way, do you have any interesting stories regarding your career?

Klonsky: It’s not the highlight, but the weirdest thing of my career is I got an email from somebody in Ministry of Agriculture and Fisheries from the United Arab Emirates. They wanted me to give a live presentation about Cooperative Extension in California and how it’s organized.

So I had to go to this office building in downtown Sacramento at 10:00 at night because of the time difference. I went into a conference room that had a special kind of projector so I could see them and they could see me. And on the monitor I see all these men walked in—they were all men—and half of them were in Western dress and half of them were wearing a Sheik-like headdress, with a band that sits on top and holds it on.

That was crazy, just being downtown after everybody is gone and the whole building was dark and quiet, except the one room that I was in.

CalAgToday:  How long was the presentation?

Klonsky: Gosh, maybe an hour.

CalAgToday:  You needed to do some research for that presentation?

Klonsky: Yeah, I had to do some research, I had to think about Cooperative Extension in a different way—the big picture. 

CalAgToday:  Keep up the good work, and I hope you are enjoying retirement.

Klonsky: Yeah, I come in two days a week, so it is nice to see everybody. I still get a lot of emails, which I need to answer.

UC leads a long tradition of environmental stewardship in California

By  Brook Gamble, Community Education Specialist, UC ANR California Naturalist Program, Hopland Research & Extension Center

Featured Photo:  Jeannette Warnert

 

Stewardship: \ˈstü-ərd-ˌship: the activity or job of protecting and being responsible for something.

In 1862 the Morrill Act was passed to support and maintain colleges of agriculture and mechanical arts, including a later provision that included the donation of public land. As one of the first land grant Universities, the University of California was well positioned to manage agricultural extension across the state as part of the Smith Lever Act of 1915. Today, many people think of California agriculture as strawberries, broccoli and rice; but it is livestock and forestry that dominated California working landscapes in those early days.

Farmer seeks assistance from UCCE farm advisor on the running board of a historic UC Cooperative Extension vehicle.
Farmer seeks assistance from UCCE farm advisor on the running board of a historic UC Cooperative Extension vehicle.

Research and extension efforts to improve forestry practices and range production throughout California have evolved over time. Research questions gradually changed over the last 100 years from a “how can we economically produce more” perspective to how can rangeland management practices improve ecosystem composition and function? How can extension programs be employed to educate stakeholders and help land managers implement change? How can we conserve working landscapes for biodiversity conservation in a period of rapid development? How can we assess and monitor management effectiveness?

This year, the University of California Division of Agriculture and Natural Resources celebrates 100 years of UC Cooperative Extension serving as a research and outreach partner in communities throughout California. For an interesting read on this rich history and the evolution of UC rangeland management perspectives, see M. George, and W. J. Clawson’s The History of UC RangelandExtension, Research, and Teaching: A Perspective (2014). Additionally, UC ANR California Rangelands Website includes a free Annual Rangeland E-book; current project descriptions, publications, and online learning modules: http://californiarangeland.ucdavis.edu/.

Maintaining and improving environmental quality on public and private land requires an informed strategy that encourages stewardship by land owners and community members. In present times, we face the challenges of managing land in the face of growing population, drought, invasive species, and climate change, just to name a few forces of global change. Out of necessity, our broader perspective on land management has shifted to one of “ecosystem stewardship” which is defined as a strategy to respond to and shape social-ecological systems under conditions of uncertainty and change to sustain the supply and opportunities for use of ecosystem services to support human well-being (Chapin et al. 2010). The stewardship framework focuses on the dynamics of ecological change and assesses management options that may influence the path or rate of that change.

Using an ecosystem stewardship framework, the UC ANR’s California Naturalist Program is building astatewide network of environmental stewards. The program is designed to introduce the public, teachers, interpreters, docents, green collar workers, natural resource managers, and budding scientists to the wonders of our unique ecology and engage these individuals in the stewardship of California’s natural communities.

Tejon Ranch Conservancy California Naturalists help with a pipe capping project to keep small animals and birds from getting trapped (Photo: Scot Pipkin)
Tejon Ranch Conservancy California Naturalists help with a
pipe capping project to keep small animals and birds from
getting trapped (Photo: Scot Pipkin)

The California Naturalist Program uses a science curriculum which includeschapters in forest, woodland, and range resources and management, geology, climate, water, wildlife, and plants. Experiential learning and service projects instill a deep appreciation for the natural communities of the state and serve to engage people in natural resource conservation.

Land management is the focus of many of the partnering organizations that offer the California Naturalist Program. For example, land conservancies and preserves are involved including, Tejon Ranch Conservancy, at 270,000 acres the largest contiguous private ranch in California; Pepperwood Preserve, a private rangeland preserve dedicated to conservation science in the Northern SF Bay Area; UC Berkeley’s Sagehen Creek Field Station, a forested research station in the Sierra; UC Hopland Research & Extension Center, a rangeland research and education facility in California’s north coast region; and the Sierra Foothill Conservancy, a non-profit land trust in the Western Sierra Nevada including Fresno, Madera, eastern Merced, and Mariposa counties. Land trusts are increasingly responsible for conserving working landscapes and open space across the state and often rely on a trained volunteer corps to steward these valuable landscapes. UC ANR is pleased to advance training opportunities for those actively managing these lands.

California Naturalists trained at these locations and more are involved in ecosystem stewardship, rangeland management, watershed restoration, and helping outdoor education programs that benefit the environment and people of all ages. Naturalists have donated over 13,000 hours of in state service in the last three years. These types of stewardship opportunities are essential for the active adaptive management that both public and private lands need to ensure resilience and continue to provide ecosystem services that we all rely on. These trained environmental stewards are an important part of this growing community of practice who not only steward land but also pass on critical knowledge about California’s natural and managed ecosystems.

With Special Thanks to Brook Gamble.

 

UC Berkeley’s Sagehen Creek Field Station

 

California Naturalists examine watershed maps

Global Food Safety Agreement Signed by China and UC Davis

Officials from China’s Northwest Agricultural and Forestry University in Shaanxi province, and the University of California, Davis, signed a memorandum of agreement on July 23, 2014 that lays the groundwork for establishing the Sino-U.S. Joint Research Center for Food Safety in China.

The signing ceremony was held in the city of Yingchuan, China, during a meeting between high-level officials of the U.S. Department of Agriculture and China’s Ministry of Science and Technology.

“Today’s agreement is a landmark event for UC Davis and for our World Food Center and serves as yet another indication of our worldwide leadership in food and health,” said UC Davis Chancellor Linda P.B. Katehi. “We are incredibly pleased to join forces with Northwest A&F University and look forward to making discoveries and realizing solutions that will promote food safety in China and around the world.”

Signing the agreement today were Harris Lewin, vice chancellor of research for UC Davis, and Wu Pute, professor and vice president of Northwest Agricultural and Forestry University. Also present were Catherine Woteki, undersecretary for research, education and economics at the U.S. Department of Agriculture; and Vice Minister Zhang Laiwu of China’s Ministry of Science and Technology.

The memorandum of agreement, which will extend over the next five years, calls for the center’s two lead universities to form a joint research team and research platform, carry out collaborative research projects and cooperate on other food safety-related projects. UC Davis’ World Food Center will identify a director to coordinate the research program. The Chinese partners will provide substantial funding for the new center, with details to be announced this fall.

“This is clear evidence that the entire UC system is fully committed to be front and center on the critical issues of food security, sustainability and health,” said UC President Janet Napolitano. She recently launched the UC Global Food Initiative as a systemwide collaboration to put the world on a path to feed itself nutritiously and sustainably.

Both the Sino-U.S. Joint Research Center and the UC Davis World Food Center will contribute to the UC Global Food Initiative.

“With UC Davis’ commitment to food safety research and China’s ever-increasing demand for food, the Joint Research Center is a natural partnership,” said Karen Ross, secretary of the California Department of Food and Agriculture. “Food safety will benefit from global scientific collaboration, and new findings will help the food and agriculture sector meet new challenges, improve the health of consumers and maintain the integrity of the global food supply chain.”

Roger Beachy, executive director of the UC Davis World Food Center, noted that the new food safety center is a logical outgrowth of many well-established research collaborations between scientists from UC Davis and China.

“Working closely with Chinese scientists and policymakers, the new center will have significant impacts on food safety in China and elsewhere around the globe,” he said.

Beachy said that the catalyst for the new collaborative effort was a visit to China last fall by Chancellor Katehi. During that visit, Chinese officials and UC Davis alumni identified food safety as a topic of key importance for China. Beachy, who has longstanding ties with China’s research community, became head of the World Food Center in January and has shepherded the collaborative agreement for UC Davis.

About the new food safety center

The Joint Research Center for Food Safety will promote international collaborative research and extension for food safety in China and the U.S. It will conduct research on global food safety-related policies; establish an international, high-level research platform for food safety research; propose solutions for hazards in the food-industry value chain; and develop models for implementation of international food safety standards and risk management. UC Davis and Northwest Agricultural and Forestry University will engage other research faculty from the U.S. and China in the new center.

Students from both UC Davis and China will be offered opportunities to study and train in each other’s countries. UC Davis faculty members currently have extensive collaborations with several Chinese universities, and the new joint research center is intended to expand these and initiate new activities.

On the September 12, 2014 celebration of the 80-year anniversary of the founding of China’s Northwest Agricultural and Forestry University, working details for the new center will be laid out.

“The food industry has become the largest industry in China; and food safety is a critical area for China and the U.S. to have creative cooperation and learn from each other,” said Zhang Laiwu, China’s vice minister of science and technology. “It not only involves technologies, but also policies and management. The fruitful cooperation will also be important to ensure food security.”

He added that the new cooperative agreement among UC Davis, Northwest Agricultural and Forestry University, Yangling National Agricultural High Tech Demonstration Zone, and Zhuhai Municipality of China is a creative platform for cooperation in improving food safety.

World Food Center at UC Davis and the UC Global Food Initiative

The World Food Center at UC Davis was established in 2013 to increase the economic benefit from campus research; influence national and international policy; and convene teams of scientists and innovators from industry, academia, government and nongovernmental organizations to tackle food-related challenges in California and around the world.

The UC Global Food Initiative is building on existing efforts such as the World Food Center and other endeavors at UC Davis, while creating new collaborations among the 10 UC campuses, affiliated national laboratories and the systemwide division of Agriculture and Natural Resources to support healthy eating, sustainable agriculture and food security. More information about the UC Global Food Initiative.

Other food-related collaborations with China

UC Davis faculty are currently involved in numerous collaborative research projects in China, including four food-safety efforts that specialize in the genomics of food-borne diseases, dairy safety, waterborne diseases and livestock, and environmental chemicals.

Additionally, the campus hosts the BGI@UC Davis Partnership, which focuses on genome sequencing, and the Confucius Institute, a cultural outreach program emphasizing food and beverages.

 

Graphic Source: Food Safety News